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Lipid activation of protein kinases

Alexandra C. Newton!
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Abstract Lipids acutely control the amplitude, duration, and
subcellular location of signaling by lipid second messenger-
responsive kinases. Typically, this activation is controlled by
membrane-targeting modules that allosterically control the
function of kinase domains within the same polypeptide.
Protein kinase C (PKC) has served as the archetypal lipid-
regulated kinase, providing a prototype for lipid-controlled
kinase activation that is followed by kinases throughout the
kinome, including its close cousin, Akt (protein kinase B).Hl
This review addresses the molecular mechanisms by which
PKC and Akt transduce signals propagated by the two major
lipid second messenger pathways in cells, those of diacylglyc-
erol signaling and phosphatidylinositol-3,4,5-trisphosphate
(PIPs) signaling, respectively.—Newton, A. C. Lipid activation
of protein kinases. J. Lipid Res. 2009. 50: S266-S271.

Supplementary key words protein kinase C e Akt e diacylglycerol e
phosphatidylinositol-3,4,5-tris phosphate

Cellular membranes form a platform of intense signal-
ing activity. Serving as the site where extracellular signals
are first received by the cell, they not only recruit and ac-
tivate effector molecules, but they also provide a spring
board to launch activated effector molecules throughout
the cell. Protein kinases comprise one of the most com-
mon classes of effector molecules that transduce signals
emanating from the plasma membrane. These kinases
can be embedded in the plasma membrane, exemplified
by the tyrosine kinase growth factor receptors, or can be
either soluble or amphipathic membrane proteins that
translocate on and off cellular membranes in response to
appropriate signals. Soluble proteins are recruited to mem-
branes by protein scaffolds, but there exists a class of am-
phipathic membrane kinases whose members directly bind
lipid second messengers via specific membrane-targeting
modules. It is this latter class of lipid-controlled kinases that
forms the focus of this review.

Despite the enormity of the kinome, few kinases (ap-
proximately 10%) directly bind and transduce lipid sec-
ond messenger signals. Yet they transduce signals in two of
the most pivotal signaling pathways in cells, notably the di-
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acylglycerol and phosphatidylinositol 3 kinase pathways.
To this end, lipid second messenger-regulated protein ki-
nases contain modules that bind with high specificity and
affinity to the relevant lipid second messengers (1, 2): the
Cl domain is the cell’s diacylglycerol sensor (3) and the
pleckstrin homology (PH) domain, or related modules such
as the phox (PX) domain, sense 3’-phosphoinositides (4).
Other domains such as the C2 domain can assist in mem-
brane recruitment of the kinase by interaction with specific
phospholipids, in some cases by a Ca2+-triggered mecha-
nism (5, 6). Thus, lipid second messenger-regulated kinases
contain one or more membrane-targeting modules whose
membrane engagement results in protein kinase activation,
typically by relieving autoinhibitory constraints.

CONTROL OF KINASES BY
MEMBRANE-TARGETING MODULES

Figure 1 illustrates the modular architecture of some of
the major lipid second messenger-sensing Ser/Thr protein
kinases. With the exception of protein kinase D, which be-
longs to the Ca®" /calmodulin kinase branch of the kinome,
these kinases are all members of the AGC (protein kinases A,
G, and C) branch of the kinome, where they account for
approximately one-third of the members of this branch.
Members include the protein kinase C (PKC) family, of
which there are 10 isozymes distributed among three sub-
families, conventional, novel, and atypical (7, 8). Conven-
tional and novel PKC isozymes contain diacylglycerol-binding
Cl domains (orange) and transduce signals that trigger
diacylglycerol production. Protein kinase D also contains a
diacylglycerol-binding C1 domain (9, 10). But some variants
of this domain, found in atypical PKC isozymes and in Raf,
do not bind diacylglycerol (3); however they still maintain
the natural affinity of C1 domains for the anionic phospho-
lipid, phosphatidylserine (11). Other kinases in this group
contain domains that recognize various 3’-phosphoinositides.
Notably, members of the Akt family of kinases contain a PH

Abbreviations: AGC kinases, protein kinases A, G and C; PDK-1,
phosphoinositide-dependent kinase-1; PH, pleckstrin homology; PHLPP,
PH domain Leucine-rich repeat protein phosphatase; PIPs, phosphatidyl-
inositol-3,4,5-trisphosphate; PKC, protein kinase C; PX, phox.
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Fig. 1. Domain composition of major Ser/Thr kinase families with membrane-targeting modules. Membrane-
targeting modules are the C1 domain (orange), C2 domain (yellow), pleckstrin homology (PH) domain (dark
purple), phox (PX) domain (light purple); the pseudosubstrate of protein kinase C (PKC) family members
is shown in green, the kinase core in cyan, the C-terminal tail (CT) in pink. Additional protein-interaction
domains present on these kinases are shown in gray [antiparallel coiled coil (ACC); Ras binding domain
(RBD); regulator of G protein signaling (RGS); coiled coil (CC); Beml (PB1)]. ROCK, Rho-activated kinase.
GRK-2, G-protein coupled receptor kinase-2; PDK-1, phosphoinositide-dependent kinase-1; PKD, protein ki-
nase D; PKN/PRK, protein kinase N/protein kinase C-related kinase; SGK-3, serum/glucocorticoid regulated

kinase 3.

domain (purple) that selectively recognizes phosphatidyl-
inositol-3,4,5-trisphosphate (PIP3), thus serving as one of
the major mechanisms to transduce signals that activate
phosphatidylinositol 3 kinase (12). A PH domain is also
found in one of the G protein receptor coupled kinases,
GRK2 (13). Phosphoinositide-dependent kinase-1 (PDK-1),
the upstream kinase for most of the AGC kinases shown
in Fig. 1, also has a PH domain. Although it binds phos-
phoinositides with high affinity, this kinase is constitutively
active in cells, with substrate conformation controlling
down-stream signaling (13, 14). Not all PH domains bind
phosphoinositides: although a PH domain is found in the
Rho-activated kinase, it functions as a protein-binding mod-
ule (15). The PH domain is the module most commonly
used to sense 3’-phosphoinositides by protein kinases, but
note that some kinases such as serum glucocorticoid kinase-
3 have a related PX domain (blue); the selective affinity of
the PX module for phoshatidylinositol-3-monophosphate
localizes SGK-3 to endosomes, where this lipid accumulates
(16). Some lipid-activated kinases employ a third lipid-
binding module, the C2 domain (yellow) (6, 17). In the case
of conventional PKC isozymes, this module binds anionic
phospholipids in a Ca**-dependent manner. In the case of
novel PKC isozymes and protein kinase N, the domain does
not appear to function as a lipid-sensing module. It is note-
worthy that for each of the major lipid-binding modules
noted above, the C1, C2, and PH domains, there exist
variants that do not bind lipids, as exemplified by the novel
C2 domain found in novel PKCs and protein kinase N,

the atypical C1 domains found in atypical PKC isozymes
and Raf, and the protein-interacting PH domain in Rho-
activated kinase.

A common theme in the regulation of amphipathic
membrane kinases that translocate on and off membranes
is the coordinated use of two membrane-targeting domains
(18). The affinity of one interaction is typically too low to
allow membrane recruitment and activation, but the coor-
dinated binding of both modules to the membrane is suf-
ficient to activate the kinase there. This is best illustrated
by the conventional PKC isozymes, which are activated
by signals that elevate diacylglycerol and intracellular
Ca®* (19, 20); the affinity of each membrane-targeting
module (the C1 and C2 domains) is too low to allow effi-
cient membrane recruitment when only one second mes-
senger is elevated (each domain has an apparent membrane
binding constant on the order of 10> M~ '). But when both
second messengers engage their respective modules, the
kinase is effectively recruited to membranes through a high-
affinity membrane interaction, which provides the energy
to release autoinhibition of the kinase (apparent binding
constants on the order of 10° M~ ') (21). The myristoyl-
electrostatic switch, which reversibly controls the membrane
interaction of the tyrosine kinase Src, is another example
(22); for this protein, an N-terminal myristic acid and an ad-
jacent stretch of basic residues comprise the two membrane-
targeting modules. As with the membrane-binding domains
of conventional PKC isozymes, each determinant binds
membranes with too low affinity to allow efficient mem-
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brane recruitment (binding constants on the order of
10°-10* M~ per module), but the coordinated engage-
ment of both determinants allows high-affinity membrane
binding (binding constants on the order of 107 MY (23).
This coordinated use of two modules allows ultrasensitivity

in reversible control of membrane translocation. In the
case of conventional PKC, a drop in either diacylglycerol
or Ca’" lowers the affinity of PKC for membranes suffi-
ciently to inactivate the kinase; in the case of Src, phos-
phorylation of the basic segment alters the electrostatic
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Fig. 2. PKC and Akt are regulated by two mechanisms in common: lipid second messengers and phosphory-
lation. A: Cartoon showing details of the regulation of conventional PKC: newly-synthesized conventional
PKC associates with the membrane in an open conformation in which the pseudosubstrate (green rectangle)
is expelled from the substrate-binding cavity of the kinase domain (blue circle) and the upstream kinase,
phosphoinositide-dependent kinase-1 (PDK-1) (pink/purple), is docked on the C-terminal tail. Phosphory-
lation at the activation loop (pink circle, Thr500 in PKC BII) is generally proposed to be first and to be fol-
lowed by two ordered phosphorylations at the C-terminal tail, the turn motif (orange circle, Thr641 in PKC
BII) and then the hydrophobic motif (green circle, Ser660 in PKC BII) (see step “1. Phosphorylation”). The
phosphorylation of the turn motif depends on the mTORC2 complex (orange oval); this phosphorylation
triggers autophosphorylation of the hydrophobic motif. The fully-phosphorylated “mature” PKC is released
into the cytosol in a closed conformation in which the pseudosubstrate occupies the substrate-binding cavity,
thus autoinhibiting the kinase (bottom left species of PKC). Signals that cause hydrolysis of phosphatidylinositol-
4,5-bisphosphate result in translocation of PKC to the membrane (see step “2. Translocation”). Specifically, bind-
ing of Ca®" to the C2 domain (yellow) recruits PKC to the membrane by a low-affinity interaction where it binds
diacylglycerol via the C1 domain (orange). Engaging both the C1 and C2 domains on the membrane results in a
high-affinity membrane interaction that results in release of the pseudosubstrate, allowing downstream signaling
(top right species of PKC). Membrane translocation is reversible and driven by changes in second messenger
levels. The membrane-bound conformation is highly phosphatase-sensitive, so that prolonged membrane binding
results in dephosphorylation of PKC by PH domain Leucine-rich repeat protein phosphatase (PHLPP) (red)
and PP2A, and subsequent degradation (see step “3. Dephosphorylation”). Binding of Hsp70 (yellow) to the
dephosphorylated turn motif on the C terminus stabilizes PKC, allowing it to become rephosphorylated and re-
enter the pool of signaling-competent PKC. Note that the phosphorylation step is constitutive, and the trans-
location and dephosphorylation are agonist-evoked. PKC that is not rescued by Hsp70 is ubiquitinated by E3
ligases such as the recently discovered RINCK and degraded. B: Cartoon showing details of the regulation of
Akt; newly synthesized Akt is phosphorylated on the turn motif (orange circle, Thr450 in Aktl) by a mechanism
that depends on mTORC2 (orange oval). Signals that generate phosphatidylinositol-3,4,5-trisphosphate (PIPs)
engage the PH domain and thus recruit Akt to the plasma membrane (see step “1. Translocation”). Membrane-
binding exposes the activation loop, resulting in phosphorylation by PDK-1 (pink circle, Thr308 in Aktl) and
subsequent phosphorylation on the hydrophobic motif (green circle, Ser473 in Aktl) (see step “2. Phosphory-
lation”). The fully phosphorylated species of Akt is locked in an active conformation and diffuses throughout
the cell to mediate down-stream signaling (bottom right species). Signaling is terminated by dephosphorylation
of the lipid second messengers and direct dephosphorylation of Akt, catalyzed in part by the recently discov-
ered PH domain Leucine-rich repeat protein phosphatase phosphatases (PHLPP) (red), which directly de-
phosphorylate the hydrophobic motif (see step “3. Dephosphorylation”).
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potential sufficiently to lose membrane tethering, releasing
Src from the membrane. Thus, the coordinated use of two
membrane-targeting modules is an effective mechanism to
decrease basal signaling and to provide high sensitivity in
the reversible membrane interaction in response to appro-
priate signals.

PKC AND AKT

Engaging their membrane-targeting modules with the
appropriate lipid ligand allosterically controls the activity
of PKC and Akt, but by different mechanisms for each ki-
nase. In the case of PKC, engaging the membrane-targeting
modules on the membrane, with sufficiently high affinity,
produces a conformational change that releases an autoin-
hibitory pseudosubstrate segment from the substrate-binding
cavity, thus allowing substrate binding and downstream sig-
naling. This active conformation depends acutely on lipid
binding. In the case of Akt, engaging the PH domain on
membranes serves the purpose of allowing priming phos-
phorylations of Akt. Once phosphorylated at two key posi-
tions, Akt is locked in an active conformation, and, unlike
PKC (which is constitutively phosphorylated at priming
sites), activity is independent of lipid binding. Rather, ac-
tivity is acutely controlled by the phosphorylation state of
Akt. Thus, lipid allosterically controls the activity of a consti-
tutively phosphorylated PKC, whereas lipid allosterically
controls the agonist-evoked phosphorylation of Akt, an
event that dissociates Akt activity from lipid binding.

The different ways that lipids control the activity of PKC
and Akt are presented in Fig. 2 where the maturation and
activation cycle of each kinase is illustrated. Conventional
PKC is constitutively phosphorylated at three key sites,
the activation loop, the turn motif, and the hydrophobic

agonist-evoked

motif, by mechanisms that depend on the upstream ki-
nases PDK-1 and mTORC2, a complex containing the
kinase TOR (24-27) (Fig. 2A). The fully phosphorylated
enzyme localizes to the cytosol in an autoinhibited con-
formation in which an autoinhibitory pseudosubstrate oc-
cupies the substrate-binding cavity (Fig. 2A, bottom left
molecule). Signals that cause hydrolysis of phosphatidyl-
inositol-4,5-bisphosphate, in particular, elevate intracellular
Ca®" and diacylglycerol. The immediate consequence for
PKC is the binding of Ca?" to the G2 domain of PKC, an
event that alters the electrostatic potential of the domain
so that upon the next diffusion-driven membrane encounter
it is retained at the membrane. The enzyme then diffuses
back and forth in two-dimensional space until it engages
its membrane-bound ligand, diacylglycerol, on the C1 do-
main. Binding of the C1 and C2 domains to membranes
provides the energy to release the pseudosubstrate from
the substrate-binding cavity, thus allowing substrate phos-
phorylation (Fig. 2A, top right molecule). Because release
of the pseudosubstrate simply depends on the binding
energy of PKC to the membrane, ligands such as phorbol
esters, which bind the C1 domain with two orders of mag-
nitude higher affinity than diacylglycerol, are able to re-
cruit PKC to membranes with sufficiently high affinity
to release the pseudosubstrate, in the absence of C2 domain
binding to membranes. Similarly, sufficiently high levels of
Ca”" can recruit PKC to membranes and cause pseudo-
substrate release in the absence of C1 domain engagement.
PKC reversibly translocates on and off membranes in re-
sponse to second messenger levels. However, the membrane-
bound conformation is sensitive to dephosphorylation and,
upon prolonged activation, becomes dephosphorylated,
ubiquitinated, and degraded. The dephosphorylated spe-
cies binds the molecular chaperone Hsp70, which allows
the enzyme to become rephosphorylated and re-enter the
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pool of signaling-competent enzyme. Thus, for PKC, lipid
binding allosterically controls the activity of the constitutively
phosphorylated enzyme by modulating the pseudosubstrate.
The role of lipids in Akt activation is to allow key prim-
ing phosphorylations. Akt is constitutively phosphorylated
at only one site, the turn motif, by a mechanism that (like
that of PKC) depends on mTORC2 (28). However, full
phosphorylation requires membrane binding (Fig. 2B).
Specifically, the PH domain of Akt binds agonist-produced
PIP3, an event that exposes the activation loop for phos-
phorylation by PDK-1, the same upstream kinase that
modifies PKC; this phosphorylation is rapidly followed by
phosphorylation of the hydrophobic motif. Once fully
phosphorylated, Akt is locked in an active conformation
and diffuses throughout the cell phosphorylating down-
stream substrates. Dephosphorylation catalyzed in part by
the phosphatase PH domain Leucine-rich repeat protein
phosphatase terminates signaling by the kinase. Thus, for
Akt, lipid binding allows phosphorylation, the key event
in locking Akt in a catalytically-competent conformation.
The advent of genetically encoded reporters revolution-
ized the study of the spatiotemporal dynamics of PKC sig-
naling (19, 29-32). The ability to simultaneously visualize
PKC translocation, PKC activity, and the second messen-
gers diacylglycerol and Ca®" has revealed that PKC iso-
zymes have a unique signature of activation depending on
the cellular location (33). In response to agonists such as
uridine-5’-triphosphate that activate G protein-coupled
receptors and cause Ca®" and diacylglycerol levels to rise,
conventional PKCs are rapidly recruited to, and activated
at, the plasma membrane, with the kinetics of activation
(Fig. 3A, blue line) mirroring the rise in Ca®* (Fig. 3, black
line) (33). This rise in Ca’®" is followed by a rise in plasma
membrane diacylglycerol, and it is the diacylglycerol levels
(Fig. 3A, orange line) that then sustain the activity of
membrane-bound PKC. Some agonists cause oscillations
in Ca®" levels, which in turn cause oscillations in PKC
activity; if diacylglycerol levels remain elevated, PKC can
remain membrane bound but the activity oscillates de-
pending on whether Ca®* levels are high and the C2
domain is membrane-engaged (and thus the pseudosub-
strate is expelled from the substrate-binding activity), or
low such that the C2 domain is not membrane-engaged
(and thus the pseudosubstrate occupies the substrate-
binding cavity) (31). Diacylglycerol levels at the Golgi are
significantly elevated compared with the plasma membrane
under basal conditions, and, in addition, agonist-evoked
increases of this lipid second messenger are much more
sustained at the Golgi compared with the plasma mem-
brane. The unique profile of diacylglycerol at Golgi pro-
duces, in turn, a PKC signature unique to Golgi; not only is
there preferential recruitment of novel PKCs, which have
an intrinsically higher affinity for diacylglycerol because
of a C1 domain tuned for tighter binding to diacylglycerol
(34, 35), but the agonist-evoked activity at Golgi is much
more prolonged than at the plasma membrane (33).
Reporters for Akt activity have revealed a wave of phos-
phorylation that emanates from the plasma membrane to
the nucleus (36). Thus, PDGF-treatment of NIH3T3 cells
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Fig. 3. Initial activation of PKC and Akt is driven by second mes-
senger levels but only PKC requires sustained increase in second
messenger levels for sustained activity. A: Graph showing the
agonist-evoked rise in intracellular Ca®" (black line), diacylglycerol
levels at the plasma membrane (orange line), and PKC activity at the
plasma membrane (blue line) simultaneously reported by probes for
Ca*", diacylglycerol, and PKC activity. Initial activation is driven by
Ca®", which recruits conventional PKC to the plasma membrane,
but sustained activity depends on diacylglycerol. Adapted from
Gallegos et al. (33). B: Graph showing agonist-evoked rise in PIPg lev-
els at the plasma membrane (orange line), Akt activity at the plasma
membrane (dark blue line), in the cytosol (medium blue line), and in
the nucleus (light blue line). Adapted from Kunkel et al. (36).

triggers rapid Akt activation at the plasma membrane
(Fig. 3B, dark blue line), with kinetics that parallel PIPs
formation (half-time of approximately 0.5—1 min) (Fig. 3B,
orange line); activity then migrates to the cytosol with a
half-time of 3-5 min (medium blue line), and, finally,
activity is observed in the nucleus with a half-time of ap-
proximately 10 min (light blue line). Activity at the plasma
membrane and nucleus is long-lived, whereas that in the
cytosol is short-lived.

CONCLUSION

Lipid second messengers relay an abundance of signals
that control cell growth and survival, among other key cel-
lular functions. Direct binding of protein kinases to these
lipid second messengers serves as a first step to transduce
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information into the depths of the cell. The activity of these
kinases is exquisitely controlled, and deregulation of this
activity results in pathological states, most notably cancer
(37, 38). This review has highlighted how two of the ma-
jor lipid-regulated kinases, PKC and Akt, use membrane-
targeting modules to directly bind lipid second messengers,
triggering conformational changes that permit activation .l

I thank members of my lab and Tony Hunter for helpful discussions.
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